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Introducing Physics Students to Electric Circuit Components  
 by Jacob Graham1 and Richard Petti2* 7/16/2019 

Abstract 
Most courses on linear electric circuits state models and solutions using directly observable circuit 
variables. This is the best way to introduce the theory for circuit design. We recommend using some 
features available in some textbooks to improve teaching of electric circuit theory to all students, and 
some features to better explain the electromagnetic phenomena in terms of electromagnetic fields.  

 
 Contents  
1 Introduction ............................................................................................................................................ 1 
2 Resistors ................................................................................................................................................. 1 
3 Capacitors ............................................................................................................................................... 1 
4 Inductors ................................................................................................................................................. 2 
5 Conclusion .............................................................................................................................................. 4 
6 References .............................................................................................................................................. 4 
 

1 Introduction 
Most college students of physics and engineering learn about the application-rich theory of lumped-parameter 
linear dynamic systems. These courses focus on stating models and solutions with observable system 
variables: voltage drop and current through each a component, and their time derivatives. This is the best 
approach to prepare students for circuit design activities.  
This work suggests focusing on two kinds of information that is found in some textbooks: first, presenting 
formulas for combining components in series or in parallel in ways that improve students’ intuitive grasp of the 
material; secondly, for students interested in physics, developing key results in terms of magnetic fields and 
fluxes.  

2 Resistors 
A discrete circuit component has constant resistance R if it dissipates electrical energy according to: 

(1) V = R I  power dissipated:  DC: P = I V = I2 R AC: ∫0
period I2 R dt /period 

For resistors R1 and R2 in series, the combined resistance is R = (R1+R2), which is easily understood by most 
students. 
For two resistors R1 and R2 in parallel, V = V1 = V2 and I = I1 + I2. So  

(2) I = I1 + I2 = (1/R1 + 1/R2) V that is, I = G V  where conductance G = G1 + G2 

We believe the formula for combining parallel resistors makes more intuitive sense when presented with 
conductance. 

3 Capacitors 
A discrete circuit component has constant capacitance C if applying a voltage V across a component causes 
charge Q to be stored in the component, according to:  

(3) Static relation:  Q = C V Dynamic relation: I = C dV/dt   

3.1 Energy stored by a capacitor 
PE can be expressed in terms of circuit variables as the energy needed to push Q “uphill” in the electrical 
potential.  

(4) PE = ∫ Q (dV/dt) dt = ∫ C V dV = ½ C V2  

Consider a parallel plate capacitor, where A = area of a plate, d = distance between plates, and ε = dielectric 
constant of the medium. Substitute V = – E d and C = ε A / d into equation (4):  
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(5) PE = ½ ∫ E•D dvol  

The energy stored by the capacitor is stored as the energy of the electric field inside the capacitor [1 p 795; 
2 p 487]. 

3.2 Capacitors in series  
For two capacitors in parallel, V = V1 = V2 and Q = Q1 + Q2. So Q = C V where C = C1 +C2, which is easily 
understood by most students. 
For two capacitors in series, V = V1 + V2 and I = I1 = I2. So dV1/dt = 1/C1 I1 and dV2/dt = 1/C2 I2, and 

(6) dV/dt = dV1/dt + dV2/dt = 1/C1 I1+1/C2 I2 = 1/C I  where  1/C = 1/C1 +1/C2 

We believe this result makes more sense to students when expressed with elastance E = 1/C. [3 /Elastance] 

(7) static: V = E Q dynamic:  dV/dt = E I where  E = E1 + E2  

A mechanical analogy might help introduce elastance to students: (a) V ~ pressure pushing fluid into a tank; (b) 
Q ~ quantity of fluid already in a tank, and I ~ rate of fluid flow into the tank; (c) E ~ elastic stiffness of the tank 
that opposes the flow in proportion to the amount of fluid in the tank. 

(8) V = E Q mechanical analog:  pressure = elastic stiffness (fluid in tank) 

3.3 Current through a capacitor 
A capacitor has no electrical continuity between its nodes. Current flows in the sense that dQ/dt at the two 
nodes has the same magnitude and opposite signs. We recommend that physics students learn this meaning of 
current flow. 

4 Inductors 
A discrete circuit component has inductance if applying dI/dt across a component causes a voltage difference 
– ΔV across the component. This process implies that applying – ΔV across the component causes the 
component to store energy. 

4.1 Inductance and potential energy expressed with circuit variables 
Inductors store charge and energy without dissipation. Linear capacitance can be defined with circuit variables 
as  

(9) constitutive relation: – V = L dI/dt definition of linear capacitance: L := – V/(dI/dt)  

This definition of inductance yields an expression for potential energy (PE) stored by an inductor using circuit 
variables. 

(10) PE = ∫ (– V) I dt = ∫ (L dI/dt) I dt = ∫ L I dI  so: PE = ½ L I2  
These expression for inductance and potential energy are the most useful form for circuit design. 

4.2 Inductance in terms of the magnetic field 
By far the simplest useful example of an inductor is a solenoid: a tightly-wound helical coil of wire. Consider a 
solenoid of radius R, length Len >> R, n turns per unit length, with magnetic permeability μ outside and inside 
that carries current I.  
By the Ampere-Maxwell law, the current generates a magnetic field B inside and outside the solenoid.  
In order to define inductance in terms of the magnetic field, define the magnetic flux. For any surface in space, 
and any magnetic field B, the magnetic flux is define as:  

(11) ΦB := ∫Area B • n dArea 

Using cylindrical coordinates (r, φ, z), we focus on the surface z = 0 that intersects the solenoid at mid-length. 
Decompose ΦB into parts inside and outside the solenoid.  

(12) ΦB := ΦB,in + ΦB,out = 2 π ∫0R B • n dr + 2 π ∫R∞ B • n dr )  

References [1] and [2] establish that in the limit Len/R → ∞,  

(13) Bz,in = μ n I   Bz,out = 0 

(14) ΦB,in = μ n I π R2   ΦB,out = 0 

By the integral version of Faraday’s law (∂Area = boundary of the disk at z = 0 inside the solenoid), 



 Introducing Physics Students to Electric Circuit Components page 3 of 4 

(15) ∂t ΦB,in + ∫ E • t d(∂Area) = 0  so:  ∂t ΦB,in = – emf = V 

Substituting the right equation in (15) into the right equation in (9), express inductance in terms of circuit 
variables.  

(16) L = ∂t ΦB / (dI/dt) = μ n π R2  

In linear circuits, L is constant, so from equation (16) we can infer that 

(17) L = ΦB / I 

4.3 Potential energy of an inductor expressed in terms of magnetic field 
Consider the solenoid. Solve the left equation in (13) for I. 

(18) I = Bin / (μ n Len)  

To express PE in term of B, substitute equation (18) into right-hand equation (10) to get:  

(19) PE = ½ (Bin2/μ) (Area Len)  so: PE = ½ ∫ B•H dvol  

All energy stored by an inductor is stored in the magnetic field in space near the inductor. 
Equate expressions for PE in (10) and (19) and solve for L to get  

(20) L =  ∫ B•H dvol / I2 = PE / (½ I2)  

Since equations (10) and (19) are independent of the solenoid model, equation (20) is as well.  

4.4 Inductors in parallel and in series 
For two inductors in series, I = I1 = I2 and V = V1 + V2. So V = L dI/dt where L =L1 + L2, which is easily 
understood by most students.  
For inductors in parallel, V = V1 = V2 and I = I1 + I2. So inductance of the combined components is described 
by: 

(21) dI/dt = (1/L1 + 1/L2) V = (1/L) V  where  L = 1/L1 + 1/L2 = L1 L2/(L1 + L2) 

We believe this result makes more sense to students when expressed with reluctance R = 1/L 
[3 /Magnetic_reluctance]. 

(22) dI/dt = R V where R = R1 + R2  

A mechanical analogy might help introduce students to magnetic reluctance: (a) I ~ conserved quantity in a tank; 
(b) R  ~ conductance of a pipe into the tank; (c) V ~ pressure pushing fluid into the tank. This analogy may not 
be the best one, because I is normally the flow of a conserved quantity.  

(23) dI/dt = R V mechanical analog:  flow rate = conductance pressure  

Inductors in parallel or in series are not treated in the textbooks we examined. 

4.5 Mutual inductance and magnetic fields outside inductors  
We believe the definition of mutual inductance in terms of fields is simpler and more physical than the definition 
in terms of circuit variables. Mutual inductance is due to B fields outside nearby inductors. [1 p990; 2 p608]. To 
the extent that B1 and B2 of two inductors overlap in space and are parallel, the potential energy of the 
combined inductors is not the sum of the energies of the separate inductors.  

(24) PEtotal = ½ ∫ B•B/μ dvol = ½ ∫ B1•B1/μ dvol + ½ ∫ B2•B2/μ dvol + ∫ B1•B2/μ dvol  

(25) PEtotal = PE1 + PE2 + ∫ B1•B2/μ dvol  

4.6 Conditions of validity of solutions 
Two conditions apply to solutions for B�,out for a long wire of radius R and for Bz,out for a long solenoid of 
radius R: 
(a) the solutions are valid only for R < r << Len; (b) the solution is not exact for r > R.  

Table 1: Treatment by two references of conditions on solution Bout  

Condition  
Long straight wire  
B�,out = μ I / (2 π r) 

Long solenoid 
Bz,out = μ I / (2 π r) 
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Solution is valid only for R < r << Len 
Ref [1]: condition is mentioned 
Ref [2]: condition is not mentioned 

Ref [1]: condition is not mentioned 
Ref [2]: solution not presented  

Solution is approximate for R < r << Len 
Ref [1]: condition is not mentioned 
Ref [2]: condition is not mentioned  

Ref [1]:  condition is not mentioned 
Ref [2]: solution not presented 

 
These conditions should accompany the description of the solution. If an inquisitive student tries to compute 
pe = potential energy per unit length for either configuration without these conditions, he/she will get  

(26) pe = integrate(constant/r2 (2 π r dr), R, big) = 2 π  constant (ln(big) – ln(R)) → ∞.  

If the two conditions above are taken into account and Bout ~ constant/rk with k > 1 for large r, then pe is finite.  

If we take limits Len →∞ and r → ∞, the order of the limits matters; more generally, the relative rates of variables 
approaching infinity. Here is a simple illustration of the problem of the order of limits. 

(27) limity→0(limit x→0 (xy)) =0   but  limitx→0(limity→0 (xy)) = 1. 

Another example is integrate(integrate(f(x, y) dx) dy) and integrate(integrate(f(x, y) dy) dx), which are equal only 
under conditions specified by Fubini’s theorem. 

5 Conclusion 
We recommend that students with a strong interest in physics should learn material about circuit components 
that goes beyond that which is of most interest to engineers: (a) Derivation of constitutive equations and stored 
energy in terms of electromagnetic fields; (b) A more physical approach to deriving component parameters for 
parallel and series configurations of some circuit components; (c) a statement of mutual inductance based on 
magnetic fields; and (d) more accurate statements of the limitations of certain “solutions” for the magnetic field 
surrounding solenoids. 
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